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ABSTRACT 

The phenomenological model of linear non-equilibrium chromatography in an isothermal column (adsorber) with constant cross- 
section was solved for finite, static and statistically homogeneous and isotropic sorption layers. The model applies the linear adsorption 
isotherm and accounts for contributions from convection, axial dispersion, external mass transfer and internal diffusion and the 
adsorption rate. The Laplace inversion of the solutions was obtained and the statistical moments up to the fourth order were calculated 
on this basis. Analysis of the moments obtained confirmed the negative influence of the dead volume of the column and of boundary 
effects on the component separation in chromatographic analysis. Comparison of the relationships for the first normal and second 
central moments, obtained by solving the models of infinite, semi-infinite and finite sorption layers, demonstrated that the choice of the 
theoretical model for experimental data processing is not critical. 

INTRODUCTION 

The models and theories of gas chromatography 
(GC) and of the closely connected dynamics of 
adsorption have undergone intense development in 
the last 3.5 years and have been used to analyse 
chromatographic processes from various points of 
view, e.g., the shape of the adsorption isotherm, 
axial dispersion, external and internal mass transfer 
and adsorption rate. The solution of these models 
and theories has been based on a number of different 
theoretical approaches; most often, the phenomeno- 
logical model, following from a set of mass balance 
partial differential equations, has been employed. 
The largest group of these theories consists of the 
phenomenological theories of linear non-equilibri- 
um chromatography that, especially after the intro- 
duction by Kubin [l] and K&era [2] of their moment 
analysis method and its further development [3-lo], 
contributed greatly to progress with the theoretical 
principles of chromatography and its application in 
the study of transport processes [ll] in adsorption 
and catalysis [12]. However, the transport of the 

adsorbate in finite layers and the effects of the 
boundary conditions at their edges has not yet been 
systematically analysed. These effects have been 
stated or assumed with little or no discussion, mainly 
in applications of chromatographic methods. 

Boundary effects have been studied only with 
respect to the experimental determination of the 
axial dispersion coefftcient for chemical engineering 
calculations on reactors. Analysis has been carried 
out for empty tubes with various locations of 
injection and measurement points inside [ 13-161 or 
outside [16] the test section. The effect of various 
initial and boundary conditions on the dispersion of 
the tracer in columns with finite and non-adsorbing 
packing was analysed in refs. 1618. Brenner [17] 
studied the dispersion model for non-adsorbing 
layers of finite length and obtained equations for the 
dimensionless breakthrough curve and the average 
adsorbate concentration in the layer. Carleton et al. 
[18] appear to be the only workers to have studied 
the transport of the adsorbate in a finite sorption 
layer, obtaining the first normal statistical moment 
of the eluted peaks for a non-isobaric layer. How- 
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ever, they did not consider dispersion of the adsorb- 
ate outside the layer and limited their analysis to the 
original Danckwerts boundary conditions [19]. 

This work is an attempt to solve the problem of 
linear chromatography with a finite sorption layer 
under the conditions of axial dispersion and with 
slow establishment of equilibrium between the mo- 

bile and stationary phases, utilizing the above-men- 
tioned moment method of Kubin [I] and K&era [2]. 
On the basis of the statistical moments obtained, the 
influence of the dead volume of the column and 
effects at the packing boundary on the GC separa- 
tion are discussed. 

THEORETICAL 

Definition of the problem 
Consider an infinite column (adsorber) with constant cross-section S,, in a section of which, z E (0,~~) is 

located a static, statistically homogeneous and isotropic sorption layer with finite length L and external 
porosity u. (Fig. 1). Hypothetical indication sensors are located at points A and B, while injection takes place at 
point 0. An “incompressible” carrier medium flows along the z-axis with a volumetric flow-rate F,. The linear 
flow-rates at intervals z E (- co,O), z E (0,~~) and z E (zL, + co) are denoted as *u, u and By, respectively. It 
follows from the restriction of constant cross-section of the column, for a linear flow-rate that 

(la) 

and 

I;: 
u=- 

a SL 
(lb) 

and thus also that 

*D,(*u) = BD,(B~) (2) 

where the superscripts A and B characterize the quantities related to the entrance and exit sections, 
respectively. 

It is further assumed that: 
(1) The column is isothermal and of the fixed-bed type. 
(2) The mobile phase flows through the column in the axial direction, is incompressible (and hence has a 

constant density) and consists of a mixture of inert carrier medium and n adsorbates with low concentrations 
that do not interact. 

I 
. . . . . . ..*........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I 
L 

\ 
INPUT 

=I3 ZA 0 
Fig. 1. Scheme of the model studied. 
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(3) The vector field of the mobile phase velocities is quasi-stationary. 
(4) The sorption layer, consisting of porous granules is statistically homogeneous and isotropic and can be 

considered as a coherent continuum [20-221. 
(5) The granules of adsorbent (with uniform size and with statistically homogeneous and isotropic porous 

structure) have the shape of spheres, “infinite” cylinders or “infinite” plates, and can also be considered as a 
continuum. Adsorption on the external surface and the contact regions between the grains can be neglected. 

(6) The resistance of the phase boundary to mass transfer is zero. 
(7) Radial effects can be neglected in the column. 
(8) Adsorption is governed by a linear isotherm. 
(9) The source of adsorbates is located only in the front of sorption layer. 
The transport process of any arbitrary adsorbate in the column can then be represented by the following set 

of equations: 

a *+,t) + AU a *’ a2 *’ 
at . az 

AD * - = *QJz,t) * a22 

w,t) 
at +w$D,.~= a2 ’ QcW 

a %fz,t) + AU a BC a2 BC 0 

at ’ aZ 
AD 

P’T = 

ac(z,r,t) _ D -.- - at 
v - i ac + a2 c 

r ar ar2 = Q&,r,t) 

Qc = +[c - CI~=~] 

(for 0 < z G ZL) 

Qn = an(;;t) _ -H,(K,C - n) 

with boundary conditions for: 
(a) equality of the flows at the adsorbent grain boundary, 

P, ac 
Qc = -Dr. ;. ar r=R 

(for z < 0) 

(for z > zL) 

(b) symmetry in the centre of the adsorbent grain, 

02% 
ar r=O 

(3) 

(4) 

(5) 

(6) 

(9) 

tw 

The Danckwerts conditions [ 191 in the extended form of Wehner and Wilhelm [23] are considered to be valid 
at the boundary of the sorption layer; these conditions are based on the intuitive assumptions for: 

(a) continuity of the concentrations, 

Ac(O-) = c(Of) (lla) 

c(zL) = %(zL+) (1 lb) 

(b) equality of the flows, 

*u(O-)*c(O-) - *D, . 
a *c(o-) C ac(o+) 

= aZ c1 u(O+)c(O+) - D, . aZ 

1 

a u(z,)c(zi) 
wi3 

- D, . aZ 

1 

a Bc(zL+) 
= “u(zL’)“c(z;) - *D, . T 

(124 

Wb) 
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Combination of conditions 11 and 12, assuming that *u(O-) = LX u(O+) = u u(z;) = B~(~L+) (see eqn. l), 
permits us to write 

AD a *‘(O-) 
P' i?Z 

= u D WO’) .- P aZ 

AD 

P 
a *dzL’> u D ac(zi) .-= .- 

dZ P dZ 

UW 

(13b) 

In eqns. 3-13, t is time, z is the axial coordinate in the column, r is the radial coordinate in the adsorbent 
grain, QZ is the rate of increase of the adsorbate concentration from the source, K, is the slope of the Henry 
adsorption isotherm and v is a shape factor with values of 1, 2 or 3 for prismatic, cylindrical or spherical 
particles of adsorbent, respectively, with characteristic dimension R. 

The local concentration of adsorbate in the fluid phase, c, the linear flow-rate of the fluid phase, U, the axial 
dispersion coefficient, D,, the rate of change in concentration c through adsorbate transport into the 
adsorbent grains, Qc, the Shilov et al. [24] and Mecklenburg [25] external mass transfer coefficient, H, related 
to unit intergranular free volume, the external porosity, Q, the external specific surface of the adsorbent grains 
S, = v( 1 - a)/R, related to unit volume of the layer, and the mean area of the boundary between the pores and 
the external free volume, P,, = /LS, (also related to unit volume of the layer), are all quantities averaged 
throughout a physically infinitesimal volume element [2&22] of the sorption layer. 

Similarly, the local adsorbate concentration in the pores, C, the local concentration of the adsorbed 
compound, n, related to unit pore volume, the effective coefficient of internal diffusion, D,, the rate of change 
of concentration C through adsorption, Q”, the coefficient of the adsorbate transfer from the volume towards 
the internal surface of the pores, H,,, and the internal porosity of the adsorbent granules, /I, are all quantities 
averaged throughout a physically infinitesimal volume element [20-221 of the adsorbent grain. 

Various types of chromatography or dynamics of adsorption can be characterized by the following initial __ 
and boundary conditions: 

Case t < 0: 

‘%(z,t) = 0 
c(z,t) = 0 

%(z,t) = 0 
C(z,r,t) = n(z,r,t) = 0 

Case t = 0: 

*C(Z,t) = *Ci (Z) 

C(Z,t) = Ci (Z) 

%(z,t) = BCj (z) 

C(Z,rpt) = Ci (Z) 

TZ(Z,r,t) = Hi (Z) 

Case t > 0: 

*c(z,t) = finite 
Bc(z,t) = finite 

for-co<z<O 
for 0 < z < zL 
forz,<z< +co 
for 0 < r < R and 

for-oo<z<O 
for 0 < z < zL 
forzr<z< +co 

for 0 d r < R and 

for z + -cc 
forz+ +co 

(14) 

where *Ci (z), Ci (z), “c(z) and Ci (z) are the initial distributions of the corresponding concentrations and zL is 
the positional coordinate of the end of sorption layer. 

Solution of the model 
The solution of the set of eqns. 3-8 with initial and boundary conditions 9-l I,13 and 14 can be considerably 

simplified using the Laplace integral transformation: 
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L{f(t)) 3 i(s) = ‘r f(t) e-“’ dt 
0 

(15) 

where s is a complex parameter. Solution [26] of the new set of transformed equations then leads to the 
following relationships for the transformed adsorbate concentrations in the different parts of the column 
(adsorber): 

(A) The region in front of the sorption layer [z E (- co,O)]: 

j A_y((,S)[eAl~(z-<) _ eA.h(z-@] dt _ h$.% . 2 . $ . e”“l” (ltja) 

-00 

(B) The section of the sorption layer (z E (O,ZL)): 

(C) The region after the sorption layer [z E (ZL, + co)]: 

A& 

WII(S) e bz - Wzl(s) e”“] 3 (16b) 

It holds for the auxiliary functions that 

(*,B)yy(Z,S) 

'A'B)X(z~s) = (A)D,[(A)A~ _ 
‘A’&] 

(17b) 

(17c) 

cr.& Wij(S) = 1 - ~~ 
Alj P 

(for i = 1,2 and j = 1,2) (17d) 

T(s) = Wll W,, eAzzL - Wlz W,, eA1’L UW 
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WI2 
U(s) = jjy 

11 

_\ *X(t,s) e-A”2r d5 - WI, 7 X((J) eAl(‘L-t) dt + 
0 

W,, 7 _X(<,s) enz(zL-C) dr - ‘Jm BX(t,~) eAAl@L-c) dt (17f) 
0 ZL 

where 

o,(s) = s + - 

a 44 

H R b(p) .~ 
4s) = 1 + p * 0, p $;(p) 

*YdZJ) = Oz(ZJ) + *Ci (Z> 

YdzP) = Ci (Z> + 
H & Y(V) 

a 4.4 4s) 

BYv(ZJ) = BCi Cz) 

The functions y(z,s), a(s), $“(p) and p are defined by the expression 

“(‘) = k?. 2k k! v(v + 2) :“,, + 2(k - l)] = 

I 

P=WGEi 

(19b) 

(19c) 

WW 

chtp) 

IO (P) 

Np) 

P 

(v = 1) 

(v = 2) 

(v = 3) 

Solution for basic types of sampling 
Inversion 16c describes an arbitrary type of dynamic adsorption or desorption from the point of view both 

the initial distributions of concentrations in the layer and the course of the input adsorbate concentration. 
Consequently, both common special cases, elution and frontal, can be obtained. 

First consider general sampling of the adsorbate at point z. E (- co,O) prior to the sorption layer determined 
by the function co (t). For the usual assumption of zero initial (t = 0) distributions of the adsorbate 
concentrations *ci (z) = ci (z) = BCi (z) = Ci (z) = ni (z) = 0, it follows from eqns. 18d and 18e that 

Y”W = "r&s) = 0 (20) 
The adsorbate sampling can be described by the source function: 

Q&t> = u co (t) @JO) (21) 
and it therefore holds according to eqn. 18c that 

*Y&s) = &(w> = a zo (s) Q,zo) (22) 
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Substitution and rearrangement of inversion 16c yields the following relationship for the transformed 
elution curve: 

F(z,s) = c”o (3) . 
1 e-(z-zL-zO,)r 

(23) 

where it holds for the auxiliary functions 1 and r that 

It follows from the definition of the Dirac b-function that [27] 

’ for 20 $ W) 

f (70) for r. E (a&) 

Wb) 

(25) 

Laplace inversion of the solution for general sampling of the adsorbate readily yields the inversion for both 
basic types of sampling. 

The elution case, the most common approach to chromatographic analysis, usually carried out by injection 
with a syringe, can be successfully modelled by the impulse Dirac b-function. Then 

co (t) = f+ . fvvo) 
L 

where MA is the total injected amount of the adsorbate. Supposing that the start of time measurement is given 
by the moment of the sampling (to = 0), then L{J(t,O)} = 1, and the term Z. (s) in eqn. 23 describing the 
inversion of the elution curve in this case is given by 

c”o (s) = J$ 
L 

(27) 

The frontal case, employed primarily in separation processes, utilizes a second basic type of sampling, 
where a constant concentration, co (t) = co = constant, is maintained at the injection point during the 
separation. The initial adsorbate concentration in the adsorber is zero. This type can be described by the step 
function. Subsequently, eqn. 23 with the term 

c”o (s) = co/s 

describes the inversion of the breakthrough curve. 

(28) 

Comparison of the Laplace images of the solutions for the elution and frontal cases of adsorbate sampling 
with uco = MA/S, yields the following relationship between the eluted peaks and breakthrough curves: 

a BC(z,t) 
[BC(Z~t)lelution = ~ 

[ 1 at frontal 

It holds in general that 

L a vz,t) 
i I at = S BZ(ZyS) - ‘Ci (Z) = S ‘C”(ZpT) 

(29) 

(30) 

as it is assumed that ‘Ci (z) = 0. 
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Statistical moments of the elution curves 
An attempt to carry out the inverse transformation of the obtained Laplace images was not successful. 

Consequently, the statistical moments of the elution curves will be employed to characterize adsorbate 
transport in a column with a finite sorption layer. The normal statistical moments & and the central moments 
pk can be derived [1,2] from the relationships 

d”T(s) 

PL; = (-l)k lim 9” 
s+O+ f(s) 

and 

(314 

@lb) 

wheref(s) is the known Laplace inversion. 
As the breakthrough curve resulting in the frontal case of adsorbate injection, in contrast to the eluted peak, 

does not have the character of a frequency function [it does not fulfil the condition lim Bc(z,t) = 01, there are 

no statistical moments of this curve. However, there are the moments of the deri&t% d”c(z,t)/dt that, with 
respect to eqns. 29 and 31, will correspond with the moments of the eluted peak, independently of the amount 
of adsorbate injected. 

After tedious calculations, the following equations for the normal and central statistical moments of the 
elution curves are obtained from the respective inversions (eqns. 23 and 27, or 23,28 and 30) with respect to 
eqn. 31: 

I&(z) = 1 (32a) 

Pi(Z) = ~[(X., + (% + 2.$] WI 

PO(Z) = 1 (334 
PI(Z) = 0 (33b) 

z; 1 
I&) = 2 . 2 

1 
pez [Pe - (1 - e -“)l(XY)f + 2 .s (1 - e-Pe)(XV)l + 

E(&)Z + 2 xE + 2 (3 + eePe) 
II 

(33c) 

j$ [Pe(l + emPe) - 2(1 - e-P”)](XY)T - 12 . s [pe emPe -(l-e - p=)I(XY): + 

6 . pe3 [Pe ePPe + 2(1 - e-P’)](XY)l + 6 

6 . 2 ~(1 - e-Pe)(x,)2 + BEG 

& Oe - (1 - e-P”)I(xY)l(xY)Z + 

& 
+ 2 .P~Z 3x~ + 2 .z (5 + 3eePe 4 (334 

Zf 
pa(z) = 4 f 7 

{ 
& [Pe’(l + 4eeP”) + 2Pe(4 + llePP’) - 2(1 - eePe)(14 + e-P”)](XY)‘: - 

12 .s [2Pe2 e-Pe - & Pe(1 - 7emP’) - 2(1 - eeP”)(2 + e-‘“)](xY): + 6 . Pe4 [2Pe2 eePe + 
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3 

Pe(3 - 5eePe) + 2(4 - 7eVPe + 3e-2Pe)](Xy)~ + 24 . 2 [2Pe emPe + (1 - eePe)(4 + e-‘“)](xJ1 + 

& 
6 . 2 . xE[Pe - (1 - e-Pe)](XY): + 12 . pe3 . xE(l - eWpe)(x,J1 + 6 . & c[Pe’ + Pe(5 + 7epPe) - 

12(1 - e-Pe)](~Y)~(xY>, + 12 . s E[Pe(l - 5eVPe) + 4(1 - e-Pe)](xY)l(xV)z + 

6 . $p &[3Pe(l + eePe) + 4(1 - e -pe)](X,)2 + 3 . j$ c2[Pe2 + 2Pe - 2(1 - e-Pe)](x,)~ + 

6 . 2 . x&,)2 + 12 * $g @‘e - (1 - e-Pe)](~y)l(x,)3 + 12 . 2 ~(1 - e-Pe)(x,)3 + 

XL 
6&(x,)4 + 3 . pe2 [ xi + 2 . z . ~$3 + ewPe) + 2 . j$ (22 + 17emPe + em2’=) 

11 (W 
where the dimensionless complexes Pe, xE, xD and (x,)~ are defined by the relationships 

Pe = zL . E (34) 
P 

z - ZL - zo 
XE = (33 

a ZL 
AD 

P 
xD= 2 

P 

(dk ” ;-) 

(35b) 

u k-l 

(dk (for k = WA) (36) 
ZL 

For the parameters (&)k, characterizing transport of the adsorbate into the adsorbent grain, we have 

(XYh = 1 + 41 + KJ 

(xy)2 = R’ (1 + a2 + mu + &I2 + K, 
Dr . v(v + 2) VH f& 

2(1 + a3 

v2(v + 2)(v + 4) 
+ R’ W + &) 

D, ’ v(v + 2) 
BW + K)’ + K, 

vH Hn 1 
+ b2R2(1 + Kd3 + 

v2H2 

2/3RU + Kn)Kn + K, 
vH,,H H,” 

R2 3 
(xv)4 = s 

0 

(5v + 12)(1 + KJ4 

* v3(v + 2)2(v + 4)(v + 6) + 
(1 + KJ2 j?R(Sv + 12)(1 + K,)2 

+ 

(6v ‘+ 12)K” 

. v2(v + 2)2(v + 4) * vH 

1 
R2 1 

+ D, v(v + 2) 

3B2R2(1 + KJ4 .~ 
Hll v2H2 

+ VR(1 + Kd2Kn + (2 + 3Kn)Kn 
vH,,H H,” 1 

+ 

B3R3(1 + K,)4 
v3H3 

+ 3B2R2(l + KA2K, + PR(2 + 3K,))K, + K, 
v2H2H,, vH,2H H,” 

where E is the porosity function defined by 

(374 

Wb) 

(37c) 

(37d) 

E = /?(l - a)/a (38) 
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-4 -2 0 2 4 

The terms in the relationships for the moments 
containing parameters xE or xn describe the contri- 
bution of the dead section of the column or effects 
on the boundaries of the sorption layer on adsorbate 
transport. The moments are independent of the 
absolute position of the injection and detection 
points, and are determined only by the total of their 
distances from the boundaries of the layer. 

Let us analyse the influence of the dead volume 
and of the boundary effects on the separation of two 
components a and b in a chromatographic analysis. 
Its efficiency is usually characterized by the resolu- 
tion: 

R, = 2d/( W, + W,) (39) 

where d is the distance between the peak maxima 
and W, and W,, are the individual base peak widths. 
The peaks are “perfectly” separated for R, > 1. It 
holds for a Gaussian shape of the peaks that d = 
(p’&, - (p’&_ and W,,, = 4&&. The new resolu- 
tion, defined by the following expression, will be 
utilized as a test criterion: 

Let us assume that the axial dispersion coeffi- 
cients of these components are not well distin- 
guished. After substitution of eqns. 32a and 33c and 
their limiting cases for xE + 0 (neglecting the dead 
volume) and xn -+ 0 (neglecting the boundary 
effects) in eqn. 40, we obtain the following relation- 
ships: 

R,* < W)x,+o and R,* -c (R,*)+,+, (410) 

Consequently, the dead volume and the effects at 
the boundaries of the sorption layer decrease the 
separation efficiency, in agreement with experimen- 
tal results. 

For the semi-quantitative determination of these 
dependences, numerical analysis was applied, The 
results of the computer simulation are given in 
Figs. 2 and 3. As the starting point of computation, 
the retention times of methane (3 min) and carbon 
dioxide (5 min), found in GC tables [28] for iso- 
thermal GC separation on a 35 cm x 0.4 cm I.D. 
column of activated charcoal (75-100 mesh; 40°C; 
nitrogen carrier gas at 20 ml/min; thermal conduc- 

4 4 

-2t i-2 

-4!4 
I I I I I I I I 

-2 0 2 4 
‘-4 

log xc 
Fig. 2. Contour map of the computer-simulated dependence of 
resolution, R:, on xn and Pe (for methane) for the GC separation 
of methane and carbon dioxide. 

tivity detector), and results of the dynamic adsorp- 
tion of methane on activated carbon [26] (250- 
3 15 ,um; 40°C; nitrogen carrier gas; Henry constant 
of methane K, = 28) was used. In a first approxima- 
tion, identity of diffusivities was assumed for both 
separated components; D, = 8 . IO-’ mm’/s, H = 
1.8 mm/s and H,, = lo3 s-l. The values of the axial 

0 2 4 6 8 

4 4 

Fig. 3. Contour map of the computer-simulated dependence of 
resolution, Rf, on xn and Pe (for methane) at a constant level 
xs = 0 for the GC separation of methane and carbon dioxide. 
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dispersion coefficients of carbon dioxide (*D, = 
0.216 cm2/s; D, = 0.264 cm2/s) and methane 
(*D, = 0.26 cm2/s; D, = 0.297 cm2/s) were calcu- 
lated from Aris’s [29] theoretical expression for these 
coefficients in a straight empty tube with laminar 
flow and a parabolic distribution of fluid phase 
velocities in its cross-section: 

D, = D, + g 
g 

(42) 

where D, is the coefficient of molecular diffusion, 
Y, is the radius of tube and U, is the mean linear 
flow velocity. The tabulated values [30] 0.184 and 
0.235 cm2/s (after conversion to 40°C) were used for 
the coefficients of molecular diffusion, D,, of carbon 
dioxide and methane, respectively. On the basis of 
these results and estimates, the other parameters 
(Henry constant of carbon dioxide K,, = 48.5, u = 
66 mm/s, CI = 0.4, /I = 0.7, E = 1.0, R = 9 . 
10m2 mm, R’/D, = 10-r s, R/H = 5 . 10m2 s, 
D,/u2 = 6.006 + 10m3 and 6.757. 10d3 s, xn = 5.114 
and 5.471 and Pe = 879 and 781 for carbon dioxide 
and methane, respectively) were calculated. 

Fig. 2 shows the contour map of the dependence 
of resolution, R,*, on the dimensionless parameters 
xn and Pe (for methane) for the above-mentioned 
model example. From the plot it is evident that the 
peaks are perfectly separated (R: 2 1) for log xE c 
1.3 and log Pe > 2.6, i.e., cu. xE < 20 and Pe > 400. 
In other words, the length of the dead part of column 
can be up to eight times greater (2.8 m) than the 
length of sorption layer without a more substantial 

TABLE I 

283 

change in the separation. For the topical value of 
Pe = 781 in the sorption layer, R,* > 1 even for log 
xn < 3.2. Generally, the influence of dead volume, 
characterized by the parameter xn, decreases with 
increasing Pe. In agreement with eqn. 41a, for a 
given value of the Pe, the resolution increases with 
decreasing dead volume (xn). 

Fig. 3 shows the contour map of the dependence 
of resolution, R,*, on the dimensionless parameters 
xn and Pe (for methane) for a constant level xE = 0. 
The dependence has the same shape as this plot, with 
minimal difference, also for non-zero values of xn 
(verified up to xE = 200). The resolution R: > 1 for 
log Pe > 2.6 (cu. Pe > 400) in the whole analysed 
interval xn E (0,9). The increase in resolution with 
decreasing boundary effects (see eqn. 42b) at a given 
Pe is very small, and this is evident only from 
numerical values. 

Further, we restrict ourselves only to the first two 
non-trivial statistical moments having the funda- 
mental meaning in chromatography: the first nor- 
mal moment p;, characterizing the time coordinate 
of the centre (of gravity) of the eluted peak (reten- 
tion time), and the second central moment p2, 
connected with its width. Table I summarizes ex- 
pressions for moments $i and p2, calculated on the 
basis of models of infinite [2,26,31,32], semi-infinite 
[26,33] and finite sorption layers. 

It is evident from comparison of the expressions in 
Table I that the choice of a theoretical model can 
essentially affect the treatment and interpretation of 
chromatographic and dynamic sorption measure- 

STATISTICAL MOMENTS FOR MODELS OF AN (A) INFINITE, (B) SEMI-INFINITE AND (C) FINITE SORPTION LAYER 
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TABLE II 

LIMITING EXPRESSIONS OF THE STATISTICAL MOMENTS FOR MODELS OF AN (A) INFINITE, (B) SEMI-INFINITE 
AND (C) FINITE SORPTION LAYER 

Pe Model & P2 

<1O-2 A 

B 

> 400 A “L (xv), 
u 

c $x.h + (XE + 2.3 2” ‘(x3:+E(Xr)l+~(XIC4.~)] Jpe 

2 1 

2 - 3. [ - u2 Pe cx”); + E(XJ* 1 
z; [ 

1 2 ' 7 p, (Xv); + E(Xv)z 1 

ments. In the methodological basis used, the model 
of a finite layer is probably the most exact from a 
physical point of view. 

Let us consider the limiting cases for very small or 
very large values of Pe, defined by eqn. 34. For 
Pe + 0, adsorbate is transported through the col- 
umn almost exclusively by diffusion. In the second 
limiting case, Pe + + 03, on the other hand, 
transport is controlled by convection. The simpler 
limiting expressions given in Table II, valid with an 
error of less than l%, can be obtained for the 
moments in these limiting cases. Namely, the term 
exp(-Pe) x 1 (for Pe < lo-*) or exp(-Pe) z 0 
(for Pe > 5), and also terms (n + Pe) z Pe (n = 1, 
. . . ,4, see Table I) for Pe > lOOn, are valid with the 
same error. The resultant condition Pe > 400 is 
usually achieved for normal chromatographic con- 
ditions. 

It follows from Table II for very small values of Pe 
that there is a fundamental difference among the 
statistical moments for various models of the sorp- 
tion layer. In the more frequent case of large Pe 
values, the corresponding moments reduce to the 
same expressions, and this process is faster for the 
model of a finite sorption layer (neglecting the dead 
volume of the column, i.e., xE + 0) as the influence 
of boundary effects (and axial dispersion outside the 

sorption layer) decreases and as the value of Pe 
increases. These qualitative conclusions have fol- 
lowing practical consequences: (i) it is preferable to 
work in the region of small Peclet numbers for exper- 
imental verification of various theoretical models; 
(ii) otherwise, the largest possible Pe values should 
be used, which can be attained by a suitable choice of 
experimental conditions. This limits the influence of 
boundary effects, decreases the dependence on the 
choice of the theoretical model and simultaneously 
simplifies the numerical treatment of the experimen- 
tal data. 

CONCLUSIONS 

The solution of the phenomenological model of 
linear non-equilibrium chromatography for beds of 
a finite length in Laplace domain has been obtained. 
The statistical moments of the elution peak up to the 
fourth order have been calculated. By the theoretical 
and numerical analysis of moments, the negative 
influence of the dead volume and boundary effects 
on GC separations has been confirmed. However, 
these dependences are not excessively important for 
the usual experimental conditions. The selection of 
the expressions for the first normal and second 
central moment, calculated on the basis of the 
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models of an infinite, semi-infinite or finite sorption 
layer, is not decisive for data analysis of current 
chromatographic measurements. 

SYMBOLS 

function defined by eqn. 18b 
local concentration of adsorbate in the 
fluid phase 
input adsorbate concentration 
local adsorbate concentration in the 
pores of adsorbent particles 
distance between two peak maxima 
coefficient of molecular diffusion 
axial dispersion coefftcient 
effective coefficient of internal diffusion 
volumetric flow-rate of the fluid phase 
external mass transfer coefficient 
coefficient of the adsorbate transfer from 
the volume towards the internal surface 
of the pores 
slope of the Henry adsorption isotherm 
length of the sorption layer 
operator of the Laplace transform 
total injected amount of the adsorbate 
local concentration of the adsorbed com- 
pound 
Peclet number defined by eqn. 34 (dimen- 
sionless) 
mean area of the boundary between the 
pores and the external free volume, /I&S, 
rate of change in adsorbate concentration 
through transport into the adsorbent 
grains 
rate of change of concentration C 
through adsorption 
rate of increase of the adsorbate concen- 
tration from the source 
radial coordinate in the adsorbent grain 
radius of the straight empty tube 
characteristic dimension of the adsorbent 
particle 
resolution between two consecutive 
peaks defined by eqn. 39 
resolution defined by means of statistical 
moments; eqn. 40 
complex parameter of the Laplace trans- 
form 
total cross-sectional area of the column 

t 
T(s) 
u 

Ulll 

w 
W 
Wij(S) 

XD 

XE 

(xv)k 

-G,s) 

Z 

Zo 

ZL 
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external specific surface of the adsorbent 
grains, v(1 - a)/R 
time 
function defined by eqn. 17e 
linear flow-rate of the fluid phase 
mean linear flow velocity 
function defined by eqn. 17f 
base peak width 
functions defined by eqn. 17d 
dimensionless parameter defined by 
eqn. 35b 
dimensionless parameter defined by 
eqn. 35a 
dimensionless complexes defined by 
eqn. 36 
functions defined by eqn. 17c 
axial coordinate in the column 
positional coordinate of the adsorbate 
sampling 
positional coordinate of the end of sorp- 
tion layer 

Greek symbols 
external porosity of the sorption layer 
internal porosity of the adsorbent gran- 
ules 
function defined by eqn. 19a 
functions defined by eqn. 18 
Dirac delta function 
porosity function, fi(l - a)/a 
function defined by eqn. 24b 
roots of the characteristic equation, de- 
fined by eqn. 17a 
roots of the characteristic equation, de- 
fined by eqn. 17b 
kth normal statistical moment 
kth central statistical moment 
shape factor of the adsorbent grain 
function defined by eqn. 19d 
function defined by eqn. 19b 
function defined by eqn. 18a 
function defined by eqn. 24a 
function defined by eqn. 19c 
parameters defined by eqn. 37 

Subscripts 
i refers to the initial distribution of the 

adsorbate concentration 
k refers to the moment order 
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V refers to the shape factor of the adsorbent 
grain 

Superscripts 
A pertaining to entrance section of the 

column 
B pertaining to exit section of the column 

refers to the Laplace transform 
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